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Abstract— Computational anatomy (CA) seeks to quantify
natural variation in biological shape and function with roots
that reach back to the seminal works of Charles Darwin and
D’arcy Thompson. CA is currently applied to study health,
disease and epidemiology and uses deformable mappings be-
tween images as a basic technique. However, there is a lack
of standards and reproducibility in the field that is due, in
part, to the use of proprietary software and private data that
is difficult to openly evaluate. To facilitate reproducibility in
CA measurements and advancement of imaging sciences, NIH
has recently committed significant support to open-source data
and software resources. Here, we report a recent product of
this commitment: Advanced Normalization Tools (ANTS), an
ITK-based toolkit for CA and related areas. The ANTS open-
source library consists of a well-evaluated suite of state-of-the-
art normalization, segmentation and template-building tools for
quantitative morphometric analysis. We highlight the prominent
features of ANTS, including diffeomorphic normalization meth-
ods, and demonstrate its utility by performing a detailed analysis
on openly-available anatomically labeled brain data from the
non-rigid image registration evaluation project (NIREP). The
results from this analysis evidences the high level of accuracy
achievable with ANTS using intensity-based registration and
segmentation. In addition, we show the significant performance
gains may be achieved by coupling intensity-based image metrics
and label-based metrics from specific, sensibly selected cortical
structures. Additional features are highlighted in the appendix.

I. INTRODUCTION

The rapid advancement of biological and medical imaging
technologies has caused a proliferation in the development of
quantitative tools for computational anatomy. The principal
tools of this emerging field are deformable mappings between
images whether they be driven by similarity metrics which are
intensity-based, point-set based, or both. Several categories of
mappings have been proposed in the literature. Of particular
recent interest are diffeomorphic transformations which, by
definition, preserve topology. Topology preservation is funda-
mental to making comparisons between objects in the natural
world that are thought to change in such a way that local
neighborhoods are preserved. Cytoarchitectonic brain mapping
studies also suggest that the layout of cell types throughout
the brain is generally preserved [1], further motivating diffeo-
morphic mapping in the context of the brain.

Despite the number of proposed algorithms, our limited
assessment of published research mirrors the experience of
many others who prefer a working paradigm of what has
been referred to as reproducible research. As described by
Dr. Kovacevic “[reproducible research] refers to the idea that,
in ‘computational’ sciences, the ultimate product is not a pub-
lished paper but, rather, the entire environment used to produce

the results in the paper (data, software,etc.).” After an informal
survey of 15 published papers, she found “none had code avail-
able” and “in only about half the cases were the parameters
[of the algorithm] specified” [2]. Recent discussions within
the computational sciences research community, particularly
among advocates of “open science,” have also voiced similar
concerns [3], [4]. In this paper, we discuss our contribution to
the open-source medical image analysis research community
which we call ANTS (Advanced Normalization Tools). Built
on an ITK framework, this software package comprises a suite
of tools for image normalization and template building based
on previously published research.

Perhaps the most persuasive evidence motivating the use
of our contributions discussed in this paper is the recent
outcome of a large-scale comparative image registration al-
gorithm assessment [5]. In the largest evaluation study to
date involving 14 popular non-linear registration algorithms,
our Symmetric Normalization (SyN) transformation model
[6] discussed below, was consistently one of the top two
performers across all tests. Overlap and distance measures
used for assessment employed three completely independent
analysis methods (permutation tests, one-way ANOVA tests,
and indifference zone ranking). Unlike some of the other
algorithms used in this brain registration evaluation study, all
of our methods (not just SyN) are available as open-source.

We first provide an overview of the different components
included in ANTS, such as the available transformation models
and similarity metrics offered. This is followed by an exten-
sive experimental analysis that builds upon the results from
the recent image normalization evaluation of [5] which was
limited to a single configuration of ANTS. A set of ANTS
tools are evaluated on the sixteen subjects from the public,
expert-labeled neuroanatomy in the NIREP dataset. This will
provide a useful benchmark for evaluating other possible
ANTS configurations. Importantly, this work also suggests—
to our knowledge, for the first time—the clear practical benefit
of time-parameterized diffeomorphic mapping over the greedy
and exponential mapping approaches.

The paper is organized as follows. Section II gives an
overview of the transformation models and similarity metrics
available in ANTS, along with optimization schemes. Sec-
tion III connects the theory with the user interface. Section IV,
first, illustrates the performance of different transformation
models on a pair of “classic” image registration examples.
Second, we report results on a series of large-scale experi-
ments that profile ANTS registration schema against a cortical
labeling problem using the NIREP evaluation dataset. Finally,
we close with discussion of the toolkit and our findings.
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II. THEORETICAL OVERVIEW OF ANTS

A useful classification schema of normalization techniques
is based upon the following three principal components [7],
[8]:

• the transformation model, which includes the regulariza-
tion kernels,

• the similarity (or correspondence) measures, and
• the optimization strategy.

In general, image normalization is the process of finding the
optimal transformation, φ, within a specified transformation
space which maps each x of image I(x) to a location in
image J (z) such that a specified cost function, C, describing
the similarity between I and J , is minimized. A summary of
available transformation models and similarity measures are
provided in Table I. Details are given in subsequent sections.

A. ANTS Transformation Models

A variety of transformation models have been proposed in
the literature with varying degrees of freedom (illustrated in
Figure 1). For deformable transformations, one approach is
to optimize within the space of non-topology preserving, yet
physically motivated transformations—an approach pioneered
by Bajcsy [9]. Elastic and related models, such as HAM-
MER [10], statistical parametric mapping (SPM) [11], free-
form deformations (FFD) [12], and Thirion’s demons [13]
operate in the space of vector fields, which does not preserve
topology. In other words, barring ad hoc constraints to prevent
otherwise, these algorithms may allow the topology to change
in an uncontrolled way which makes the deformable mappings
difficult to interpret in functional or anatomical studies.

Thus, in addition to shape-based, biological motivation,
diffeomorphic mapping is motivated by the desire for de-
formable transformations that provide well-behaved solutions
with mathematical guarantees about distances and regularity.
Furthemore, the diffeomorphic space has group structure [14].
Optimizing directly within this space has shown remarkable
success in various computational anatomy studies involving
longitudinal [15], [16], functional [17], and population data
[15]. We include three such diffeomorphic algorithms in the
ANTS toolbox based on previously reported research and a
new time-parameterized extension to the standard symmetric
normalization algorithm [6].

Regardless of current research trends, however, we recog-
nize that selection of the transformation model is ultimately
application-specific, that no single choice is optimal for all
scenarios [18], and, therefore, the transformation model must
be chosen in a principled fashion. In fact, several non-
diffeomorphic algorithms performed quite well in Klein’s
comparative study of nonrigid registration algorithms [5]. For
this reason, ANTS also includes elastic-related methods for a
panoply of transformation model options. As we show below,
all of these methods may be implemented, when using gradient
descent optimization, in a generic framework that generates
transformations (when necessary) and updates transformations
according to the needs of each model. ANTS implementation
follows this general form for each model.

1: Diagrammatic illustration of the transformation model
hierarchy where the encompassing transformation spaces are
characterized by increasing degrees of freedom.

1) Rigid and Affine Linear Transformations : Image reg-
istration strategies often begin with a linear transformation
for initial global alignment which precedes a deformable
transformation with increased degrees of freedom. The lin-
ear transformations available within ANTS optimize either a
mean-squared difference (MSQ) or mutual information (MI)
similarity metric which are optimized with respect to transla-
tion, rotation, and, in the case of affine transformations, scaling
and shearing. The successive optimization of each component
of the linear transformation allows for careful control over
increasing degrees of freedom. ANTS also composes the affine
transformation with the deformable transformation field before
performing any interpolation or downsampling. In this way,
ANTS normalization never requires more than a single image
interpolation step and is able to always refer back to the orig-
inal full-resolution image sources. The ANTS implementation
of rigid mapping is quaternion-based with additional scaling
and shearing terms when affine mapping is desired (via the
--rigid-affine true flag).

2) Vector Field Operators for Regularization: Deformable
normalization strategies typically invoke a deformation reg-
ularization step which smooths the displacement field, u,
or velocity field, v, or both by a linear operator such as
the Laplacian or Navier-Stokes operator. One may write this
regularization as a variational minimization in terms of its
linear operator or in terms of a kernel function operating
on the field itself, e.g., usmooth = K ? unot smooth, where
K? denotes convolution with the Green’s kernel, K, for the
linear operator, L. Regularization models operate on either
the whole mapping φ or the gradient of the similarity term
or both. The same regularization schema is available for both
diffeomorphic and the recently proposed directly manipulated
free-form deformation (DMFFD) [19], allowing regularization
of both total deformation and deformation update. Viewed
from this perspective, hybrid configurations incorporating dis-
cretized FFD strategies and diffeomorphisms can be combined
for novel image normalization approaches. ANTS enables a
variety of choices for K including the Gaussian with varying
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Category Transformation, φ Similarity Measures Brief Description

Linear Rigid† MI, MSQ translation and rotation
Affine† MI, MSQ rigid, scaling, and shear

Elastic Deformable CC, PR, MI, MSQ, JHCT, PSE Demons-like algorithm
DMFFD CC, PR, MI, MSQ, JHCT, PSE FFD variant

Diffeomorphic Exponential CC,PR, MI, MSQ, JHCT, PSE minimizes v(x)
Greedy SyN† CC, PR, MI, MSQ, JHCT, PSE minimizes v(x, t) locally in time

Geodesic SyN† CC, PR, MI, MSQ, JHCT, PSE minimizes v(x, t) over all time

I: Available transformations and similarity metrics available in ANTS. Similarity metric acronyms: CC = cross correlation, PR
= probabilistic matching, MSQ = mean squared difference, MI = mutual information, JHCT = Jensen-Havrda-Charvat-Tsallis
divergence, PSE = point-set expectation. ANTS also provides the inverse of those transformations denoted by the ‘†’ symbol.

σ and a variety of B-spline functions, both of which induce
adequate regularity for normalization models used in ANTS.
While additional physical operators will be included in future
releases, current B-spline options provide many orders of
flexibility [20].

3) Diffeomorphic Transformations: Diffeomorphisms form
a group of differentiable maps with differentiable inverse [21],
[22] that is closed under composition. In contrast, the vector
space that most deformable image registration methods use
is closed under addition, an operation that cannot guarantee
topology preservation. That is, two topology-preserving vector
fields added together are still a vector field but the result may
no longer preserve topology. Furthermore, most regularization
models for vector spaces use a quadratic penalty, thus making
large deformations difficult to realize. Modeling transforma-
tions with diffeomorphisms, on the other hand, ensures a
flexible, linear penalty on deformation while guaranteeing
topology preservation. Additionally, distance metrics in the
space of diffeomorphisms allow geodesic properties to be
explored [23], [24].

ANTS assumes the diffeomorphism, φ, is defined on the
image domain, Ω, and maintains an affine transform at the
boundary such that φ(∂Ω) = A(Id) where A(Id) is an
affine mapping applied to the identity transformation. The
map φ, over time, parameterizes a family of diffeomorphisms,
φ(x, t) : Ω × t → Ω, which can be generated by integrating
a (potentially) time-dependent, smooth velocity field, v :
Ω×t → Rd, through the ordinary differential equation (o.d.e.)

dφ(x, t)
dt

= v(φ(x, t), t), φ(x, 0) = x. (1)

The existence and uniqueness theorem for o.d.e.’s implies
that integrating Equation (1) generates a diffeomorphism. The
deformation field yielded by φ is u(x) = φ(x, 1)− x.

Dupuis et al. [25] motivated the usage of diffeomorphisms
for CA by showing that the variational form

D(I,J ) =
∫ 1

0

||Lv||dt, I(φ(x, 1)) = J (z) (2)

represents a true mathematical metric between anatomical
instances I and J given an appropriate norm, L, on the
velocity field, v. An optimal solution, v∗, minimizes the metric
D(I,J ) with respect to L. Dupuis [25] also showed that
such a solution is guaranteed to be well-posed. Intuitively,

Equation (2) provides a sense of distance between two anatom-
ical shapes. It also illustrates that the optimal diffeomorphic
solution is analogous to finding the geodesic curve between
two points in a curved space. 1

In most real-world applications, however, a diffeomorphic
path connecting the anatomical instance J with I is non-
existent (due, for example, to photometric variation, idiosyn-
cratic cortical folding or the presence/absence of a tumor in
neuroanatomical images). Therefore, the following minimizing
variational form is used for optimization in diffeomorphic
normalization to accommodate inexact matching [25], [26]

v∗ = argmin
v

{∫ 1

0

||Lv||2dt + λ

∫
Ω

||I ◦ φ(x, 1)− J ||dΩ
}

.

(3)

The Euler-Lagrange equations characterizing the optimizing
time-varying velocity field, v∗, were derived in [26] and later
used in formulating the gradient-descent optimization scheme
known as large deformation diffeomorphic metric-matching
(LDDMM) [24] with the similarity metric, or data term, for
LDDMM being the squared intensity difference with weight
λ.

To accommodate a variety of medical image normalization
tasks, one typically encounters more complex intensity trans-
fers between one anatomical instance J and another instance
I. Thus, ANTS enables not only a variety of similarity metric
possibilities beyond the conventional squared difference metric
but it also permits any number of different similarity metrics
for a particular image normalization task. This leads to the
following generalization of Equation (3):

v∗ = argmin
v

{∫ 1

0

||Lv||2dt + λ

∫
Ω

Π∼(I, φ(x, 1),J )dΩ
}
(4)

where Π∼ is a similarity metric depending on the images and
the mapping and λ controls the degree of exactness in the
matching. If Π∼ is selected as cross-correlation, then one is
estimating the diffeomorphism under more robust illumination
constraints, as described in [6].

1It is important to note the similarity between the definition of curve length,R
||C′(t)||dt, for the parametric curve C(t) and Equation (2). In this sense,

the solution for Equation (2) is the geodesic diffeomorphism, where v is
the tangent vector of the diffeomorphism, such that the shape distance, D,
between I and J is minimized.



IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. X, NO. XX, NOVEMBER 200X 4

Exploiting the fact that the diffeomorphism, φ, can be
decomposed into two components φ1 and φ2, one may con-
struct a symmetric alternative to Equation (4). Now define, in
t ∈ [0, 0.5], v(x, t) = v1(x, t) and v(x, t) = v2(x, 1−t) when
t ∈ [0.5, 1]. This leads to the symmetric variant of Equation
(4),

{v∗1,v∗2} =argmin
v1,2

{
∫ 0.5

0

||Lv1(x, t)||2 dt +
∫ 0.5

0

||Lv2(x, t)||2 dt

+ λ

∫
Ω

Π∼ (I ◦ φ1(x, 0.5),J ◦ φ2(x, 0.5)) dΩ

}
.

(5)

Note that the regularization term, here, is equivalent to that in
equation 3. The only change is the splitting of the integral into
two time intervals reflecting the underlying optimized com-
ponents of the velocity field. The corresponding symmetric
Euler-Lagrange equations are similar to [26]. The difference,
here, is that in finding v∗, we minimize the variational
energy from either end-point towards the mid-point of the
transformation, as indicated by the data term. This strategy
“splits” the optimization dependence equally between both
images. Thus, gradient-based iterative convergence deforms I
and J along the geodesic diffeomorphism, φ, to a fixed point
midway (intuited by the notion of shape distance) between I
and J thus motivating the denotation of the solution strategy
as Symmetric Normalization (SyN).

Other diffeomorphic algorithms have since been reported in
the research literature e.g. DARTEL [27] and Diffeomorphic
Demons [28], [29], both of which use the constant velocity,
exponential model for generating diffeomorphisms. We thus
include three diffeomorphic transformation models for param-
eterizing φ(·). These include Geodesic SyN, Greedy SyN, and
exponential mapping. As summarized in Table I, each of these
transformation models can utilize a host of similarity measures
both individually and in mutual combination.

a) Geodesic SyN: Using a gradient-based optimization
strategy for minimizing equation (5) first requires a specified
discretization of t, s.t. t ∈ [0, 1] ≈ {0, 1/k, 2/k, · · · , 1}
where integer k > 1 is the desired number of discretized
intervals. Calculation of the gradient of Π with respect to the
diffeomorphisms φ1 and φ2 is performed at each of these t
values, tk,

∇Πi(x, tk) =
∂

∂φi
Π∼(I(φ−1

1 (x, tk)),J (φ−1
2 (x, 1− tk))

(6)

for i ∈ {1, 2}. The total velocity field is then updated from
the previous iteration according to, for each i,

v(x, t) = v(x, t) + δK ?∇Πi(x, t), (7)

where δ is the user-specified gradient descent parameter. Note
that the update, here, is a N + 1-dimensional vector field and
K is a N + 1-dimensional operator, when the images are N
dimensions. We generate φi(x, t) for each t ∈ [0, 1] and i ∈
{1, 2} by integrating Equation (1) using Runge-Kutta methods.

We cycle through these steps until convergence or iterative
exhaustion.

b) Greedy SyN: Although the Geodesic SyN algorithm
conforms most closely to the theoretical diffeomorphic foun-
dations culminating with Equation (5), the computational and
memory cost is significant due to the dense-in-time gradient
calculations and requisite reintegration of the diffeomorphisms
after each iterative update. As a lower-cost alternative, we
offer a greedy variant which performs quite well for most
medical image normalization problems we have encountered.
Additionally, this was the strategy used in the large-scale
comparative image registration algorithm assessment of [5].

Greedy optimization of Equation (5) calculates the gradient
only at the mid-point of the full diffeomorphism, i.e. at t = 0.5
in equation 6

∇Π =
∂

∂φi
Π∼(I(φ−1

1 (x, 0.5)),J (φ−1
2 (x, 0.5))) (8)

for i ∈ {1, 2}. φ1(x, 0.5) and φ2(x, 0.5) are then updated from
the previous iteration according to

φi(x, 0.5) = φi(x, 0.5) + (δK ?∇Πi(x, 0.5)) ◦ φi(x, 0.5).
(9)

That is, the gradient at the mid-point is mapped back to
the origin of each diffeomorphism. We then update the full
mapping by explicitly enforcing φ−1(φ(x, 1)) = x in the
discrete domain, as described in [6].

c) Exponential Mapping: Ashburner introduced DAR-
TEL (Diffeomorphic Anatomical Registration using Exponen-
tiated Lie algebra) as a rapidly computed alternative to time
parameterized diffeomorphic schemes [27]. The key difference
between a time-varying diffeomorphism and a diffeomorphism
generated by an exponential mapping [27] is that the ex-
ponential mapping maintains only a single vector field that
is constant in time. A diffeomorphism can be generated by
exponentiation of a constant velocity field from the following
o.d.e (cf Equation (1))

dφ(x, t)
dt

= v(φ(x, t)), φ(x, 0) = x. (10)

Note that there is no explicit time parameter in the velocity
field. Theoretically, restricting the velocity field to be constant
in time reduces the size of the space that may be generated
[14] in a way that is similar to the difference between real and
rational numbers, the latter of which are sparsely distributed
through the reals. ANTS registration via exponential mapping
optimizes the functional,

||Lv(x)||2 + λ

∫
Ω

Π∼ (I,J ◦ φ(x, 1)) dΩ. (11)

ANTS currently updates the velocity field based on the gradi-
ent only at the end-point. That is, the gradient is computed
after the image J is mapped to the “fixed” image I. In
contrast, DARTEL optimizes over the time discretization,
computing the gradient at each discrete time point, as in the
full ANTS geodesic optimization. However, ANTS also allows
a greedy exponential mapping strategy that is analogous to
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the method described in [29] (GreedyExp). An important
difference between Diffeomorphic Demons and exponential
mapping is that Diffeomorphic Demons composes exponential
maps together. It is therefore closer to a greedy descent
strategy similar to that used in Christensen’s classic approach
[30].

4) Vector Space Transformations: Potential mapping solu-
tions to the image matching problem operating in vector spaces
are constructed in a similar variational form as that for the
diffeomorphic formulation. We write this general variational
energy, Π, as

Π(I,J , φ) =
∫

Ω

(Π∼(I,J , φ)(x) + λ ΠR(φ)(x)) dΩ, (12)

where I and J are, again, the moving and fixed images,
respectively, and φ is the transformation which maps between
I and J . Π∼ is the similarity metric and ΠR is the explicit
regularization term.

a) Gaussian-Regularized Elastic Deformation: A simple
and efficient, yet powerful image normalization algorithm
is the approach known as Thirion’s demons [13]. Using an
optical flow based similarity, the solution is obtained by
iterating between the calculation of image forces and sub-
sequent Gaussian regularization. In ANTS, we extend this
basic approach to include the similarity metrics available for
deformable registration (see Table I). This leads to an update
form that is performed as follows:

U =
∂

∂φ
Π∼(I(x),J (φ−1(x))),

u(x) = Ku ? (u(x) + δKU ? U), (13)

where Ku regularizes the total deformation field and KU

regularizes the gradient field. 2 Thus, ANTS vector field
transformation models default to a Demons style optimization.
Like the Demons algorithm, this method uses a greedy descent
on the energy and does not truly optimize the total variational
form. The update strategy for the exponential mapping is very
similar to the above, but with an additional composition on
the gradient that maps the gradient back to time zero. See
[29] for a nice discussion of the distinction between additive
and compositive updates in these methods.

B. ANTS Intensity-Based Similarity Metrics

Several intensity-based image metrics have been proposed
in the literature with varying levels of performance dependent
upon specific applications. We have included several of the
most popular similarity metrics within ANTS. In addition,
our software framework facilitates the development of other
image metrics. Both mutual information [31] and mean-
squared difference similarity metrics are available for the
linear transformations. Also included are the cross-correlation
(the PR metric) [15], local mutual information [12], [32],
and mean squared difference similarity metrics for the non-
linear transformation models. The parameters for the different
metrics are discussed in the ANTS documentation [33]. The

2Any ANTS transformation model may be used with both update and total
deformation regularization.

cross-correlation uses a local neighborhood in a spatially
varying correspondence model which provides robustness to
illumination and inhomogeneity. Therefore, we choose the cor-
relation metric for most practical image registration problems
in real imagery.

C. ANTS Label or Point-Based Similarity Metrics

In addition to intensity-based metrics, ANTS also con-
tains similarity metrics for registering labeled point-sets or
label images. These include a landmark matching metric and
two point-set metrics which can accommodate point-sets of
different cardinality. These point-set metrics can be used
alone for strict point-set registration or in conjunction with
intensity-based metrics for dual intensity/point-set registration.
Exact matching and partial (or incompletely labeled) point set
matching are available.

1) Exact Landmark Matching: Generalizing the B-spline
fitting algorithm of [34], we developed a scattered data ap-
proximation algorithm [35] and contributed the code to the
ITK library [20]. This code is included in ANTS and forms
the basis of our exact landmark matching where this metric
seeks to minimize the weighted sum of distances between cor-
responding landmarks using a hierarchical approach. One can
also associate relative confidence values with each landmark
for fine-tuning exact landmark matching results.

2) Point-Set Expectation: In [36], the point-set matching
problem was formulated in the context of incomplete label
matching but is equally applicable to the general scenario
of registering point-sets not necessarily of equivalent cardi-
nality. Given two point-sets, X and Y , the essential idea
underlying the point-set expectation matching algorithm is
that the optimal solution minimizes the distance between each
point y ∈ Y with its corresponding expected point in X .
When discussing these point-based metrics, we abuse notation
slightly by “hiding” the application of the deformation to the
points to simplify the notation. However, in practice, we apply
the same mapping to the points as we do to the imagery that
is associated with them and that defines their spatial domains.
Thus, the transformations that appear in the image similarity
term are also used in the point similarity for all below.

We calculate the expected point using a Bayesian formu-
lation and a non-parametric Parzen windowing scheme. This
allows one to define the probability of the point x ∈ X given
a point y ∈ Y as

P(X = x|Y = y) = G(y;x, σX) (14)

where G(y;x, σX) is a normalized Gaussian with mean x and
standard deviation σX . The expected point E(X|y) is then
calculated to be

E(X|Y = y) =
|X|∑
j=1

P(X = xj |Y = y)xj

=
1
|X|

|X|∑
j=1

G(y;xj , σX)xj (15)

where | · | denotes cardinality. The weighted sum of distances
between the points in Y and their corresponding expected
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points in X is calculated from Equation (15), i.e.

PSE(X, Y ) =
1
|Y |

|Y |∑
i=1

∥∥∥∥∥∥yi −
1
|X|

|X|∑
j=1

G(yi;xj , σX)xj

∥∥∥∥∥∥
2

.

(16)

The ANTS parameters for this metric require one to choose
the percentage of points to use from the input data (subset
selection increases efficiency), the Parzen window sigma (σX ),
the number K for the number of nearest neighbors used
in the Parzen window calculation (again for efficiency) and,
finally, the number of iterations over which one optimizes the
similarity symmetrically. This latter option is useful for partial
matching problems as in [36]. A related similarity metric,
based on maximizing the Jensen-Havrda-Charvat-Tsallis Di-
vergence between the point sets, is described in the appendix.

III. ANTS IMPLEMENTATION AND USAGE

ANTS, built upon an ITK foundation, maintains the same
coding style as its base. For much of its functionality, ANTS
requires ITK, necessitating the installation of ITK prior to
installing ANTS. All ANTS source code is available via
the online source code repository SourceForge.3 Binaries for
Windows, OSX, 32 and 64-bit Linux are also available from
the same online location. For quality assurance and mainte-
nance purposes we have established an ANTS test reporting
open-source “dashboard”4 on our lab website5 to monitor
compilation and testing of the ANTS program. A screenshot
from a daily testing period is given in Figure 2. Such a
configuration facilitates reporting of problems encountered by
users on a multitude of computing platforms.

Based on our experience with standard command line ar-
gument parsing packages (e.g. getopt), we developed our
own set of classes for an intuitive command line interface.
A summary of command line arguments are given in Table
II. These ANTS argument parsing classes provide an intuitive
compromise between parsers where every variable requires a
unique flag and strict ordering requirements on the command
line. A multivariate command line call to ANTS is given by:

>ANTS 3
--metric MSQ[fixedImage.nii,movingImage.nii,1]
--metric PSE[fixedImage.nii,movingImage.nii,

fixedLabels.nii,movingLabels.nii,0.25,0.1,100,0,10]
--transformation SyN[1,2,0.1] --geodesic 2
--regularization Gauss[6.0,0.25]
--iterations 50x20x10x5
--output-naming results.nii

The MSQ metric uses weight 1 while the PSE metric has
weight 0.25. In the PSE metric, ten percent of points are
selected from the Label images (param 0.1). The point set
variance is 100, points are selected densely (not just from
the boundaries of the labels) and 10 nearest neighbors are
used. The transformation model is the full time optimization
of the symmetric SyN transformation (chosen by including
–geodesic 2) with gradient step 1, two time points in the

3http://sourceforge.net/projects/advants/
4http://www.cdash.org
5http://www.picsl.upenn.edu/cdash/index.php?project=ANTS

spatiotemporal discretization and a time-step of 0.1 in the
Runge-Kutta integration that generates the diffeomorphisms.
The correspondence between the ANTS command line speci-
fication and the image normalization formulation with images
I and J and their corresponding labeled images X and Y
illustrates the motivation for our command line interface,

Π(I,J , X, Y, φ) =
∫ 1

0

||Lv(x, t)||2dt︸ ︷︷ ︸
-t SyN[·], -r Gauss[·,·]

+

λ1

∫
Ω

||I ◦ φ1(x, 0.5)− J ◦ φ2(x, 0.5)||dΩ︸ ︷︷ ︸
-m MSQ[J ,I,λ1]

+

λ2

|Y |

|Y |∑
i=1

∥∥∥∥∥∥yi −
1
|X|

|X|∑
j=1

G(yi;xj , σX)xj

∥∥∥∥∥∥
2

︸ ︷︷ ︸
-m PSE[Y ,X,λ2]

. (17)

Here, we apply the expectation-based point set registration
method for mapping labeled points sets, as described in
[36]. ITK-SNAP may be used to label images and exported
segmentation images may be input to the PSE metric below,
as labeled data. The Frown and Smile data is used as example
and is shown in figure 3. This data is available in the
ANTS/Examples/Data/ directory. This example should run on
the downloaded ANTS data so you may see the results. The
ANTS CMakeLists.txt file contains the command that runs
this data in automated testing (via the CMake ctest command)
and allows the user to evaluate whether s/he is getting the
expected performance from their own installation. In Table II
we give a brief summary of the arguments available for the
normalizations offered by the ANTS package. This includes
the corresponding variable specification. More information can
be found on the ANTS website.

IV. EXPERIMENTAL EVALUATION

The first part of our experimental evaluation will assess
ANTS performance on qualitative, “classic” examples of large
deformation image registration. Two examples will suffice,
both of which are based on the letter “C” examples pioneered
by [30] and also used in [29]. The purpose of these examples is
to show large deformation capabilities with different transfor-
mation options. We follow this example with experiments that
assess whether, in the cortical labeling problem with normal
control data, the added flexibility of true large deformation
implementations conveys a performance advantage.

A. Classic Registration Examples

The classic C examples are used to illustrate differences
in the ability of image registration transformation models
to achieve “large-deformation” mappings between images.
While good performance in these examples provides little
insight about normalization of real brain imagery, one is
able to evaluate the relative accuracy and flexibility of the
transformation model when topology and similarity concerns
are minimized. An example is shown in figure 4. (which uses
the LDDMM like --geodesic 1 flag). Here, we will
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2: The ANTS dashboard, which is hosted on the PICSL website, reports daily building and testing of the ANTS software. It
also allows any user to submit their own building and testing configurations to help with debugging issues and maintenance
for a variety of computing platforms.

Argument Flag Variables Sample Parameters

Linear
Iterations --linear-iterations N1xN2xN3x. . .
Similarity --linear-metric MI,MSQ [Nbins,Nsamples]

Affine or Rigid --do-rigid true / false

Deform.

Image Similarity --metric,-m MI,CC,PR,MSQ [I,J ,radius]
Point-Set Similarity --metric,-m PSE,JHCT [I,J , X, Y ]

Iterations/Level --iterations,-i N1xN2xN3x. . .
Regularization --regularization,-r Gauss,DMFFD [σ2

gradient,σ
2
total], [1x1,3x3]

Transformation --transformation,-t Elast,SyN,Exp [∆gradient]
Transformation --large-deformation SyN [∆gradient,# time points,dT]

Misc. Histogram Match I,J --use-histogram-matching 1
NN Interpolation --use-NN 0

Mask Image --mask,-x mask.nii
Output Naming --output-naming,-o filename.nii

II: The various flags and variables for a variety of image registration possibilities. Additional information can be found on
the ANTS website [33].

compare advantages and disadvantages of Elastic mapping,
Diffeomorphic Demons, greedy SyN and geodesic SyN on this
example. The commands used for the example are available in
supplementary material. The images are available in the ANTS
Examples/Data directory.

B. Cortical Labeling

There are many avenues for exploration of the various
components of ANTS. However, due to space constraints, we

limit experimental analysis within this paper to an extension
of the normalization assessment carried out by [5]. As pre-
viously mentioned, this large-scale assessment encompassed
evaluation of 14 popular registration algorithms which were
optimized, in terms of their parameters, by their respective
authors before a thorough brain image normalization study.
Although the Greedy SyN algorithm, outlined in an earlier
section, was consistently one of the top two performers in
Klein’s study, for the benefit of the users of ANTS, we explore
the other transformation model possibilities within ANTS
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3: Expected output for the frown to smile shows a smooth,
though large deformation. The grids are overlaid on the de-
formed images. In this case, the label images and the similarity
metric images are identical. The labelings are important for
guiding this image mapping to a good local minimum. Without
the label guidance, an accurate mapping between the “smile”
and the “frown” cannot be achieved as the image similarity
term only maps part of the image correctly. Users may run
the example themselves as all data is available in the ANTS
toolkit Examples/Data directory.

4: ANTS Large Deformation: The original goal of ANTS
was to develop public, open source large deformation image
registration. This is a classic example showing the progress
of deforming a half C to a full C along a geodesic diffeo-
morphism. The deforming grid accompanies each deformed
image.

and compare them with Greedy SyN. In terms of data, we
utilize the NA0 evaluation database of the Non-Rigid Image
Registration Evaluation Project (NIREP) for future comparison
with evaluation studies that have been proposed by the NIREP
initiative.6

As outlined in the introduction, in addition to the trans-
formation, the optimization strategy and similarity metric
form the image normalization scheme. Since our optimization
strategy is limited to gradient descent, experimental analysis
includes an exploration of optimal gradient steps within a
sensible window where the steps are scaled according to
the voxel spacing. In terms of similarity metric, we limit
exploration to cross-correlation while varying the radius within
reasonable values. Other metrics were not explored since the
labeled brain images entail a simple intensity relationship
between image pairs obviating the need for similarity metrics
for more complex intensity relationships (e.g. MI) in addition
to the fact that the consistently top two performers in [5] used
cross-correlation.

Briefly, two experiments were performed. The first exper-
iment consisted of a more extensive parameter search over
both the transformation model space and the cross-correlation
metric radius using the exhaustive pairwise combination of the
eight 2-D images illustrated in Figure 5. Based on the results
of the first experiment, the parameter space was pruned and
subsequently used for the registrations performed during the
second experiment involving 10 randomly selected image pairs

6http://www.nirep.org/
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5: The eight 2-D simulated images used for the initial
parameter search. These images are available with the ANTS
source distribution.

from the 16 labeled NA0 NIREP brain images.

C. 2-D Simulated Image Normalization Evaluation
Eight simulated 2-D images were created to model the

types of deformations one would encounter in brain image
normalization. Each image was created with isotropic spacing
and of size 102 × 95. The foreground of each image was
comprised of two labels representing the white matter and
grey matter. Since the 2-D simulated image experiments were
used to prune the transformation model space (and not the
image similarity metric space) the foreground intensities were
not created to model the intensity variation normally seen in
the grey/white matter. Note that these images are distributed
with the ANTS open source package.

D. 3-D NIREP Brain Image Normalization Evaluation
The Non-Rigid Image Registration Project is a large-scale

evaluation resource for deformable registration algorithms
headed by Gary Christensen at the University of Iowa. In
addition to the development and distribution of the necessary
software tools for algorithmic validation, this project includes
the distribution of appropriate image data and corresponding
segmentations. One such database that has been made available
is referred to as the “NA0” database consisting of 16 MR
image volumes of normal adult human volunteers. A brief
demographic sketch of the NA0 database is as follows: 8 males
with mean age of 32.5 ± 8.4 years (range of 25 to 48 years)
and 8 females with mean age of 29.8 ± 5.8 years (range of
24 to 41).

Following acquisition, each image was resampled and
padded to isotropic voxel spacing of 0.7× 0.7× 0.7 mm3 and
total size of 256×300×256 voxels. The cortex of each of the
16 MR image volumes was segmented into 32 regions [37],
[38] using Brainvox which were later refined using manual
editing.

Build template parallel with affine update .... scripts etc .

V. DISCUSSION
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6: Canonical image views of NA01 image from the NIREP
data base (left column) and the corresponding segmentations
(right column).

VI. ADDITIONAL ANTS FEATURES

a) Directly Manipulated Free-Form Deformation: An-
other top performer in Klein’s study [5] was the Image
Registration Toolkit (IRTK) based on the research originally
reported in [12] in which mutual information and a free-form
deformation (FFD) transformation model were used to analyze
breast deformation. In ANTS we provide an implementation
of a variant of the well-known FFD transformation model for
image registration known as directly manipulated free-form de-
formation [19]. The DMFFD model replaces the standard FFD
gradient used in [12] with an intuitive preconditioned gradient
to overcome problematic energy topographies intrinsic with
the traditional approach. DMFFD, in ANTS, is a regularization
option as opposed to a specific registration method. That is,
we use the same transformation models and gradient descent
strategies detailed above, but allow the DMFFD model to
regularize the update or total deformation.

For n-D images, the FFD (and DMFFD) transformational
model, φFFD, is defined as

φFFD =
M1∑

i1=1

. . .

Mn∑
in=1

Pi1,...,in

n∏
j=1

Bij ,dj (uj) (18)

where Pi1,...,in is an n-D grid of control points and Bij ,dj (uj)
is the B-spline in the ithj direction of order dj . The gradient of
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the image normalization energy, Π, with respect to the con-
trol points used during gradient-based optimization is easily
calculated to be:

∂Π
∂Pi1,...,in

=
NΩ∑
c=1

(
∂Π∼

∂φ
+

∂ΠR

∂φ

)
c

n∏
j=1

Bij ,dj
(uc

j), (19)

which is the gradient used in [12]. In contrast, the DMFFD
approach uses a preconditioned gradient given by:

∂Π
∂Pi1,...,in

=

(
NΩ∑
c=1

(
∂Π∼

∂φ
+

∂ΠR

∂φ

)
c

n∏
j=1

Bij ,dj (u
c
j)

·
∏n

j=1 B2
ij ,dj

(uc
j)∑d1+1

k1=1 . . .
∑dn+1

kn=1

∏n
j=1 B2

kj ,dj
(uc

j)

)

·

(
1∑NΩ

c=1

∏n
j=1 B2

ij ,dj
(uc

j)

)
. (20)

The difference between the two gradients is seen to reside
strictly in terms of the B-spline shape functions which serve
to normalize the DMFFD gradient in a unique fashion so
as to minimize its susceptibility to hemstitching during the
course of optimization. The DMFFD approach, while available
in ANTS, has not yet been exploited due to its relatively
increased computational demands relative to the default reg-
ularization which is a fast Gaussian regularizer as in the
Demons method.

b) Jensen-Havrda-Charvat-Tsallis Divergence: Recent
information theoretic approaches have been proposed for
point-set registration. A previous open-source contribution
[19] generalizes the Jensen-Shannon divergence to the Jensen-
Havrda-Charvat-Tsallis (JCHT) divergence which permits a
fine-tuning of the divergence measure such that emphasis can
vary between robustness and sensitivity for application-specic
tailoring [39].

Each point-set is represented as a PDF via a Gaussian
mixture model (GMM). Assuming K point-sets denoted by
{Xk, k ∈ {1, . . . ,K}}, the kth point-set is denoted by
{xk

1 , . . . , xk
|Xk|}. The corresponding kth PDF is calculated

from the kth point-set as

Pk(s) =
1

|Xk|

|Xk|∑
i=1

G(s;xk
i , Ck

i ) (21)

where G(s;xk
i , Ck

i ) is a normalized Gaussian with mean xk
i

and covariance Ck
i evaluated at s. For each point, xi, the

associated weighted covariance matrix, CKi , is given by

CKi =

∑
xj∈Ni,xj 6=xi

K(xi;xj)(xi − xj)T(xi − xj)∑
xj∈Ni,xj 6=xi

K(xi;xj)
(22)

where Ni is the local neighborhood of the point xi and K
is a user-selected neighborhood weighting kernel. We use an
isotropic Gaussian for K with variance σ2

Ki
as well as a k-d

tree structure for efficient determination of Ni [40]. Calcula-
tion of the gradient requires the inverse of each covariance
matrix. To avoid ill-conditioned covariance matrices, we use
the modified covariance Ci = CKi + σ2

nI where I is the

identity matrix and σn is a parameter denoting added isotropic
Gaussian noise.

We designate the number of sample points generated for
each of the K probability density functions as {M1, . . . ,MK}
and the kth set of points as {sk

1 , . . . , sk
Mk
}. The JHCT diver-

gence is then calculated using the K sets of points and the
formula

JHCTα(P1, . . . ,PK) =
1

1− α 1
M

 K∑
k=1

Mk∑
j=1

[
P∗(sk

j )
]α−1 − 1


+

1
N

K∑
k=1

|Xk|
Mk

Mk∑
j=1

[
Pk(sk

j )
]α−1 − 1

 (23)

where

P∗(X) =
1
N

K∑
k=1

|Xk|∑
i=1

G(x;xk
i , Ck

i ), (24)

N =
∑K

k=1 |Xk|, and M =
∑K

k=1 Mk. The prior weighting
values are calculated from γk = |Xk|/N such that the larger
point-sets are weighted more heavily.
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